Super Rare-Ap自学

AP 微积分核心词汇

总进度: 0/211 (0%)

AP 微积分核心公式

1.1 Function and Limit

1. 五种基本初等函数图像性质

Power: y = xn
Exponential: y = ax
Logarithmic: y = logax
Trigonometric: y = sin x, cos x, tan x, cot x, sec x, csc x
Inverse trigonometric: y = sin-1x, cos-1x, tan-1x, cot-1x, sec-1x, csc-1x

2. 四种表达函数的解析式

Standard: y = f(x)
Parametric: { x = f(t), y = g(t) }
Polar: r = f(θ)
Vector: r(t) = ⟨f(t), g(t)⟩

3. 三个重要极限

limx→0 sin x/x = 1
limx→∞ (1 + 1/x)x = e
limx→∞ amxm + .../bnxn + ... = { am/bn (if m=n), 0 (if n>m), ∞ (if n

1.2 Derivatives

1. 导数定义式

f'(x0) = limΔx→0 f(x0+Δx) - f(x0)/Δx
f'(x0) = limx→x0 f(x) - f(x0)/x-x0

2. 求导公式和法则

(xn)' = nxn-1
(ax)' = axln a
(sin x)' = cos x
(cos x)' = -sin x
(tan x)' = sec2x
(cot x)' = -csc2x
(sec x)' = sec x tan x
(csc x)' = -csc x cot x
(ln x)' = 1/x
(logax)' = 1/x ln a
(arcsin x)' = 1/√(1-x2)
(arctan x)' = 1/1+x2
Chain rule: d/dx [f(g(x))] = f'(g(x)) * g'(x)

1.3 Integrals

1. 不定积分定义式

∫f(x)dx = F(x) + C

2. 求不定积分的四种方法

Formulas: ∫xndx = xn+1/n+1 + C
∫sin x dx = -cos x + C
∫cos x dx = sin x + C
∫sec2x dx = tan x + C
U-substitution
Partial fractions
Integration by parts: ∫u dv = uv - ∫v du

1.4 Series

1. 级数的定义与收敛性

Series: ∑an = a1 + a2 + ...
Partial Sum: Sn = a1 + a2 + ... + an
Convergence: If limn→∞ Sn exists, the series converges.

2. 判定级数收敛性的三大审敛法

Ratio Test: limn→∞ |an+1/an| = ρ
Integral Test
Comparison Test

4. 幂级数和泰勒级数

Power Series: ∑cn(x-a)n
Taylor Series: f(x) = f(a) + f'(a)(x-a) + f''(a)/2!(x-a)2 + ...
Maclaurin Series: Taylor series at a=0.